Sparse Linear Algebra (API)

LinearAlgebra.choleskyFunction
cholesky(A::SparseMatrixCSC; shift = 0.0, check = true, perm = nothing) -> CHOLMOD.Factor

Compute the Cholesky factorization of a sparse positive definite matrix A. A must be a SparseMatrixCSC or a Symmetric/Hermitian view of a SparseMatrixCSC. Note that even if A doesn't have the type tag, it must still be symmetric or Hermitian. If perm is not given, a fill-reducing permutation is used. F = cholesky(A) is most frequently used to solve systems of equations with F\b, but also the methods diag, det, and logdet are defined for F. You can also extract individual factors from F, using F.L. However, since pivoting is on by default, the factorization is internally represented as A == P'*L*L'*P with a permutation matrix P; using just L without accounting for P will give incorrect answers. To include the effects of permutation, it's typically preferable to extract "combined" factors like PtL = F.PtL (the equivalent of P'*L) and LtP = F.UP (the equivalent of L'*P).

When check = true, an error is thrown if the decomposition fails. When check = false, responsibility for checking the decomposition's validity (via issuccess) lies with the user.

Setting the optional shift keyword argument computes the factorization of A+shift*I instead of A. If the perm argument is provided, it should be a permutation of 1:size(A,1) giving the ordering to use (instead of CHOLMOD's default AMD ordering).

Examples

In the following example, the fill-reducing permutation used is [3, 2, 1]. If perm is set to 1:3 to enforce no permutation, the number of nonzero elements in the factor is 6.

julia> A = [2 1 1; 1 2 0; 1 0 2]
3×3 Matrix{Int64}:
 2  1  1
 1  2  0
 1  0  2

julia> C = cholesky(sparse(A))
SparseArrays.CHOLMOD.Factor{Float64, Int64}
type:    LLt
method:  simplicial
maxnnz:  5
nnz:     5
success: true

julia> C.p
3-element Vector{Int64}:
 3
 2
 1

julia> L = sparse(C.L);

julia> Matrix(L)
3×3 Matrix{Float64}:
 1.41421   0.0       0.0
 0.0       1.41421   0.0
 0.707107  0.707107  1.0

julia> L * L' ≈ A[C.p, C.p]
true

julia> P = sparse(1:3, C.p, ones(3))
3×3 SparseMatrixCSC{Float64, Int64} with 3 stored entries:
  ⋅    ⋅   1.0
  ⋅   1.0   ⋅
 1.0   ⋅    ⋅

julia> P' * L * L' * P ≈ A
true

julia> C = cholesky(sparse(A), perm=1:3)
SparseArrays.CHOLMOD.Factor{Float64, Int64}
type:    LLt
method:  simplicial
maxnnz:  6
nnz:     6
success: true

julia> L = sparse(C.L);

julia> Matrix(L)
3×3 Matrix{Float64}:
 1.41421    0.0       0.0
 0.707107   1.22474   0.0
 0.707107  -0.408248  1.1547

julia> L * L' ≈ A
true
Note

This method uses the CHOLMOD[ACM887][DavisHager2009] library from SuiteSparse. CHOLMOD only supports real or complex types in single or double precision. Input matrices not of those element types will be converted to these types as appropriate.

Many other functions from CHOLMOD are wrapped but not exported from the Base.SparseArrays.CHOLMOD module.

source
LinearAlgebra.cholesky!Function
cholesky!(F::CHOLMOD.Factor, A::SparseMatrixCSC; shift = 0.0, check = true) -> CHOLMOD.Factor

Compute the Cholesky ($LL'$) factorization of A, reusing the symbolic factorization F. A must be a SparseMatrixCSC or a Symmetric/ Hermitian view of a SparseMatrixCSC. Note that even if A doesn't have the type tag, it must still be symmetric or Hermitian.

See also cholesky.

Note

This method uses the CHOLMOD library from SuiteSparse, which only supports real or complex types in single or double precision. Input matrices not of those element types will be converted to these types as appropriate.

source
SparseArrays.CHOLMOD.lowrankupdowndate!Function
lowrankupdowndate!(F::CHOLMOD.Factor, C::Sparse, update::Cint)

Update an LDLt or LLt Factorization F of A to a factorization of A ± C*C'.

If sparsity preserving factorization is used, i.e. L*L' == P*A*P' then the new factor will be L*L' == P*A*P' + C'*C

update: Cint(1) for A + CC', Cint(0) for A - CC'

source
LinearAlgebra.ldltFunction
ldlt(A::SparseMatrixCSC; shift = 0.0, check = true, perm=nothing) -> CHOLMOD.Factor

Compute the $LDL'$ factorization of a sparse matrix A. A must be a SparseMatrixCSC or a Symmetric/Hermitian view of a SparseMatrixCSC. Note that even if A doesn't have the type tag, it must still be symmetric or Hermitian. A fill-reducing permutation is used. F = ldlt(A) is most frequently used to solve systems of equations A*x = b with F\b. The returned factorization object F also supports the methods diag, det, logdet, and inv. You can extract individual factors from F using F.L. However, since pivoting is on by default, the factorization is internally represented as A == P'*L*D*L'*P with a permutation matrix P; using just L without accounting for P will give incorrect answers. To include the effects of permutation, it is typically preferable to extract "combined" factors like PtL = F.PtL (the equivalent of P'*L) and LtP = F.UP (the equivalent of L'*P). The complete list of supported factors is :L, :PtL, :D, :UP, :U, :LD, :DU, :PtLD, :DUP.

When check = true, an error is thrown if the decomposition fails. When check = false, responsibility for checking the decomposition's validity (via issuccess) lies with the user.

Setting the optional shift keyword argument computes the factorization of A+shift*I instead of A. If the perm argument is provided, it should be a permutation of 1:size(A,1) giving the ordering to use (instead of CHOLMOD's default AMD ordering).

Note

This method uses the CHOLMOD[ACM887][DavisHager2009] library from SuiteSparse. CHOLMOD only supports real or complex types in single or double precision. Input matrices not of those element types will be converted to these types as appropriate.

Many other functions from CHOLMOD are wrapped but not exported from the Base.SparseArrays.CHOLMOD module.

source
LinearAlgebra.qrFunction
qr(A::SparseMatrixCSC; tol=_default_tol(A), ordering=ORDERING_DEFAULT) -> QRSparse

Compute the QR factorization of a sparse matrix A. Fill-reducing row and column permutations are used such that F.R = F.Q'*A[F.prow,F.pcol]. The main application of this type is to solve least squares or underdetermined problems with \. The function calls the C library SPQR[ACM933].

Note

qr(A::SparseMatrixCSC) uses the SPQR library that is part of SuiteSparse. As this library only supports sparse matrices with Float64 or ComplexF64 elements, as of Julia v1.4 qr converts A into a copy that is of type SparseMatrixCSC{Float64} or SparseMatrixCSC{ComplexF64} as appropriate.

Examples

julia> A = sparse([1,2,3,4], [1,1,2,2], [1.0,1.0,1.0,1.0])
4×2 SparseMatrixCSC{Float64, Int64} with 4 stored entries:
 1.0   ⋅
 1.0   ⋅
  ⋅   1.0
  ⋅   1.0

julia> qr(A)
SparseArrays.SPQR.QRSparse{Float64, Int64}
Q factor:
4×4 SparseArrays.SPQR.QRSparseQ{Float64, Int64}
R factor:
2×2 SparseMatrixCSC{Float64, Int64} with 2 stored entries:
 -1.41421    ⋅
   ⋅       -1.41421
Row permutation:
4-element Vector{Int64}:
 1
 3
 4
 2
Column permutation:
2-element Vector{Int64}:
 1
 2
source
LinearAlgebra.luFunction
lu(A::AbstractSparseMatrixCSC; check = true, q = nothing, control = get_umfpack_control()) -> F::UmfpackLU

Compute the LU factorization of a sparse matrix A.

For sparse A with real or complex element type, the return type of F is UmfpackLU{Tv, Ti}, with Tv = Float64 or ComplexF64 respectively and Ti is an integer type (Int32 or Int64).

When check = true, an error is thrown if the decomposition fails. When check = false, responsibility for checking the decomposition's validity (via issuccess) lies with the user.

The permutation q can either be a permutation vector or nothing. If no permutation vector is provided or q is nothing, UMFPACK's default is used. If the permutation is not zero-based, a zero-based copy is made.

The control vector defaults to the Julia SparseArrays package's default configuration for UMFPACK (NB: this is modified from the UMFPACK defaults to disable iterative refinement), but can be changed by passing a vector of length UMFPACK_CONTROL, see the UMFPACK manual for possible configurations. For example to reenable iterative refinement:

umfpack_control = SparseArrays.UMFPACK.get_umfpack_control(Float64, Int64) # read Julia default configuration for a Float64 sparse matrix
SparseArrays.UMFPACK.show_umf_ctrl(umfpack_control) # optional - display values
umfpack_control[SparseArrays.UMFPACK.JL_UMFPACK_IRSTEP] = 2.0 # reenable iterative refinement (2 is UMFPACK default max iterative refinement steps)

Alu = lu(A; control = umfpack_control)
x = Alu \ b   # solve Ax = b, including UMFPACK iterative refinement

The individual components of the factorization F can be accessed by indexing:

ComponentDescription
LL (lower triangular) part of LU
UU (upper triangular) part of LU
pright permutation Vector
qleft permutation Vector
RsVector of scaling factors
:(L,U,p,q,Rs) components

The relation between F and A is

F.L*F.U == (F.Rs .* A)[F.p, F.q]

F further supports the following functions:

See also lu!

Note

lu(A::AbstractSparseMatrixCSC) uses the UMFPACK[ACM832] library that is part of SuiteSparse. As this library only supports sparse matrices with Float64 or ComplexF64 elements, lu converts A into a copy that is of type SparseMatrixCSC{Float64} or SparseMatrixCSC{ComplexF64} as appropriate.

source
  • ACM887Chen, Y., Davis, T. A., Hager, W. W., & Rajamanickam, S. (2008). Algorithm 887: CHOLMOD, Supernodal Sparse Cholesky Factorization and Update/Downdate. ACM Trans. Math. Softw., 35(3). doi:10.1145/1391989.1391995
  • DavisHager2009Davis, Timothy A., & Hager, W. W. (2009). Dynamic Supernodes in Sparse Cholesky Update/Downdate and Triangular Solves. ACM Trans. Math. Softw., 35(4). doi:10.1145/1462173.1462176
  • ACM933Foster, L. V., & Davis, T. A. (2013). Algorithm 933: Reliable Calculation of Numerical Rank, Null Space Bases, Pseudoinverse Solutions, and Basic Solutions Using SuitesparseQR. ACM Trans. Math. Softw., 40(1). doi:10.1145/2513109.2513116
  • ACM832Davis, Timothy A. (2004b). Algorithm 832: UMFPACK V4.3–-an Unsymmetric-Pattern Multifrontal Method. ACM Trans. Math. Softw., 30(2), 196–199. doi:10.1145/992200.992206